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Some peculiarities of dipole ordering in systems with uniaxial or cubic 
anisotropy with an arbitrary degree of dilution are analyzed in terms of random 
local field theory. The approach takes into account the effect of thermal and 
spatial fluctuations of the local fields acting on each particle from its neighbors 
with an accuracy corresponding to that of the Beth~Paierls pair clusters 
approach. We show that ferromagnetic (ferroelectric) structure for uniaxial Ising 
dipoles distributed on a simple cubic lattice is intrinsically unstable against the 
fluctuations of the local fields for any concentration of the dipoles. This result 
is quite different from the prediction of the mean-field theory which implies the 
possibility of ferromagnetic ordering as a metastable state in field-cooled 
experiments. The local field fluctuations do not exclude, however, anti- 
ferromagnetic ordering above a certain critical concentration. Ferromagnetic 
ordering is possible for other types of lattice geometries and for an amorphous- 
like dipole distribution above a certain critical concentration. A simple physical 
explanation of such behavior is given based on the specific angular dependence 
of the dipole-dipole interaction that results in a relatively high value of the local 
field second moment for simple cubic lattice. 

KEY WORDS:  Oreintational ordering; dipole-dipole interactions; soft dipole 
spheres; simple cubic lattice; local field; long-range order; fluctuations. 

I. I N T R O D U C T I O N  

The ordering of particles due to dipole-dipole interactions arises in many 
contexts. Examples include ferrofluids and electrorheological fluids, ~-3) 
electronic and nuclear magnetism, ~4'5) ferroelectrics and electric dipole 
glasses, ~8) ferroelectric nematics, ~9) etc. The dipole-dipole interaction is a 

Department of Chemistry, Princeton University, Princeton, New Jersey 08544. 

471 

0022-4715/97/0700-0471512.50/0 (f:3 1997 Plenum Publishing Corporation 



472 Vugmeister and Rabitz 

long-range and sign-changeable interaction that makes the analysis of 
dipole ordering nontrivial. Even for dipoles occupying the regular positions 
in a periodic lattice the situation is not completely understood. It has been 
established long ago ~~ ~2) that the nuture of the dipole ordering depends 
on the geometry of the lattice. In particular, conventional mean-field theory 
predicts that for a simple cubic lattice the energy of a ferromagnetic 
(ferroelectric) structure is higher than that for an antiferromagnetic struc- 
ture, contrary to body-centered or face-centered cubic lattices, possessing 
the ferromagnetic ground state. 

Also mean-field theory predicts that the ferromagnetic transition tem- 
perature, for a simple cubic lattice would be only slightly below the anti- 
ferromagnetic transition temperature. These results, although correctly 
reproducing the fact that for simple cubic lattice ferromagnetic type of 
dipole ordering would not be realized in equilibrium, imply that ferro- 
magnetic state could be achieved as a metastable state by cooling down the 
system in a strong external field. 

Mean-field calculations do not properly tract the stability of the struc- 
ture against thermal fluctuations. A stability analysis of the ferromagnetic 
phase against the spin-wave fluctuations has been performed by Cohen and 
Keffer/t~) The conclusion was that the ferromagnetic structure is unstable 
against the formation of spin waves for freely rotating dipoles located at 
the sites of a simple cubic lattice. A stability analysis has not been done, 
however, for Ising uniaxial dipoles. It is apparent that in this case a dif- 
ferent approach should be developed, since fluctuations of the spin-wave 
type are forbidden for anisotropic Ising spins. A stability analysis of dipole 
systems adequate for uniaxial symmetry will be performed in the present 
paper. We will show that in anisotropic systems the situation is similar to 
that for freely rotating dipoles and ferromagnetic ordering is not possible 
for a simple cubic lattice even as a metastable state. 

The situation is more complex in dilute dipole systems, as the dilution 
is an additional source of fluctuations. Therefore a general question con- 
cerns the possibility of long-range order due to dipole-dipole interactions 
in dilute systems. This question for isotropic 3-dimensional dipole systems 
has been originally considered by Aharony, (~3) who concluded that long- 
range ferromagnetic order is not possible for dilute isotropic dipole systems 
due to their instability against transverse fluctuations of the local field. The 
analogous conclusion for very dilute dipole systems with uniaxial or cubic 
anisotropy has been obtained by one of the authors, ~14) concluding that 
very dilute dipole systems are unstable against the longitudinal fluctuations 
of the local field as well. 

New impetus to investigate dipole ordering in dilute systems is given 
by the molecular dynamic simulations of Wei and Patey (9) for soft dipolar 
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spheres. They have shown that for systems of dipole spheres there exists a 
reduced critical density of particles above which ferroelectric long range 
order is possible. Recently the conclusion that ferroelectric dipole ordering 
could exist for completely random spatial particle configurations (and 
uniaxial orientational anisotropy) has been confirmed in simulations. ~5) To 
the same conclusion came Zhang and Widom (16) using the continuous 
version of the random local field theory. (17' 18) 

A key to understand is the physics permitting ferroelectric ordering of 
randomly distributed dipole spheres while disallowing an ordering for 
point dipoles distributed on the simple cubic lattice. Intuitively one would 
expect the opposite result to be true since randomness in dipole con- 
figurations might increase the role of fluctuations. In order to explore this 
matter a general formalism is needed capable of spanning both situations. 
We will show below that random local field (RLF) theory taking into 
account the effect of pair correlations between dipole orientations is 
sufficient to elucidate the main difference between the two situations 
indicated above. 

The remainder of the paper is organized as follows. In Section II we 
derive the basic equations for the local polarization given by the 
microscopic version of the RLF theory. For systems with uniaxial 
anisotropy the RLF theory is based on the exact equations for local 
polarization and employs the decoupling approximation in which only pair 
correlations are taken into account. This approximation was originally 
proposed by Zernike ~19) and further developed by Kaneyoshi (2~ (who used 
the techniques of differential operators), for the Ising model with nearest 
neighbor interactions. The advantage of the RLF theory in the microscopic 
form presented below is that it allows a simple and convenient way to 
analyze the criteria of spontaneous appearence of the stable structures of 
various symmetries (i.e., ferro- or antiferromagnetic ordering or other types 
of ordering) depending explicitly on the interaction potential and particle 
concentration. 

The application of the formalism for the dipole-dipole interaction is 
given in Section III. We show that for a simple cubic lattice the effect of 
fluctuations of the local field prevents the appearence of ferromagnetic 
structure for any dipole concentration. The RLF theory predicts, however, 
the well defined critical concentration of dipoles above which the 
antiferromagnetic type of ordering takes place. We show that the absence 
of the ferroelectric type of ordering for a simple cubic lattice is a conse- 
quence of the specific angular dependence of the dipole-dipole interaction 

( 1 -  3 cos 2 0) that causes very large fluctuations of the local fields in a 
simple cubic lattice compared to body-centered lattices and those with a 
amorphous-like dipole distribution. 
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II. B A S I C  E Q U A T I O N S  

We consider Ising spins randomly occupying sites on a 3-dimensional 
lattice. The Hamiltonian of the system is 

H= -�89 ~" Jo.li!~, I~= +I (I) 
i , j = l  

where ~ '  denotes the summation over the occupied sites, Jo describes the 
interaction between spins I i and /.1 located at sites i and j with the coor- 
dinates r~ and rj, ro = r~-rj .  

In the development of the RLF approximation we start from the 
identity (2') 

(/i> = ( tanh ( ~ ) )  (2) 

where (...> denotes the thermal average at temperature T, and 

E~ = Z' J~jl~ (3) 

is the local field acting on every dipole due to interaction with its 
neighbors. Eq. (2) can be written in the form 

<li> = f_~ dEtanh ( E )  f~(E) (4) 

where 

f~(E) = (~(E--Ei)> (5) 

Note that the function f~(E) in Eq. (4) is the exact distribution func- 
tion of the local field acting on dipole i. Mean-field theory corresponds to 
the replacement fi(E) = f (E)  = 6 ( E -  (/~i)), where the overbar denotes the 
additional average over spatial configurations of the particles randomly 
occupying the lattice sites, (/~i) is a conventional form of the mean-field 
value of the local field. Klein et al.(1) introduced the so called random mean 
field approach representing f / ( E ) = 6 ( E - - ( E i ~  ). In Klein's approach only 
configurational fluctuations of the local fields are taken into account com- 
pared with Eq. (5) which takes into account thermal fluctuations of the 
local fields as well. 
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Using the integral representation of the delta-function and the fact 
that one has 12~= 1 and l 2n+ 1= li, we rewrite Eq. (5) as 

1 i ~  . f (E )  = ~ dp e'PEfip (6) 

in which 

f,.p = ( exp[ -ipE~] ) = ( ~ [cos( pJ~k) -- il~, sin(pJst,) ] I (7) 

In order to calculate the phase transition temperature it is sufficient in 
Eq. (7) to keep only terms linear in ( l i ) .  We also neglect correlations 
between different dipoles k, k' interacting with dipole i, which is equivalent 
to the Zernike approximation. When this is done, the expression for fip 
assumes the form 

tip = H cos(pJ~) - i Z '  l-[ cos(pJ,k) s in(pJ,) ( l j )  
k j k ~ j  

(8) 

Only the second term in Eq. (8), which depends on ( / j ) ,  contributes to 
Eq. (4). Taking the configurational average of the Eqs. (4) and (8) we 
finally obtain 

N0 
m i = c  Y' ~ i j (T)mj  (9) 

j =  1 

where rn i = ( l i ) .  The summation in Eq. (9) is taken over all No lattice sites 
and c = N/No is the atomic concentration. 

f :  e x p [ - F I ( p )  ] sin(J~p) (10) 
�9 o(T) = T dp sinh(vrpT/2) 

exp[ - F I ( p ) ]  = I-I (c cos(pJik) + (1 - c ) )  
k ~-,] 

(11) 

~,.j can be considered as the effective interaction between dipoles i and j 
renormalized by the effect of  fluctuations. ~ ~ Jg as Jo ~ O, however ~ 
saturates to the value q~0 ~ 1 as Jo ~ oo. 

While obtaining Eq. (9) we used the identity 

; 
_ ~ sinh(lrpT/2) 

822/88/1-2-32 
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and the decoupling approximation 

[ I  c~ [ I  cos(pJij)(!i) (13) 
k ~ j  k ~ j  

Eq. (13) is the basic equation for the evaluation of the phase transition 
temperature (assuming a second order phase transition). Since Eq. (13) is 
a translationally invariant equation, its solution can be found by spatial 
Fourier transform, that yields 

m(q) = c~(T, q) m(q) (14) 

where 

re(q) = ~ m/d q .rj (15) 
J 

q~(T, q) = ~  ~o(T) e iq "r0 (16) 
r~ 

The bifurcation points of Eq. (15) (at which nontrivial solutions 
m(q.,.) ~ 0 appear) satisfy the condition 

c~(Tc, q.,.)= 1 (17) 

If there are two or more different solutions of Eq. (17), only the tem- 
perature (T,) . . . .  the higher temperature among possible solutions of 
Eq. (17), would be the true second-order transition temperature. Below 
(To)max one should take into account the appearence of the order para- 
meter corresponding to the wavevector qs (for which Zc=(Zc)max) that 
makes invalid the linear approximation, Eq. (8), below (To)max. 

In order to calculate the susceptibility we use the fluctuation- 
dissipation relation 

1 
Zq = ~  Sq (18) 

where Sq is the static structure factor 

Sq = c + c2(l~lj) (19) 

In order to obtain the equation for Sq we use the Ornstein-Zernike 
approach ~22) and assume that in Eq. (2) spin 10 has a given random orienta- 
tion. We also use the definition 

vi0 - ( U 0  > = ((/,> 010 > (20) 
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where ( ls)  0 is the average value of l~ at given value of 10. The equation for 
Fio can also be obtained by multiplying Eq. (2) by l0 and averaging. In the 
linear approximation, Eq. (8), we obtain 

F q =  c ~ ~;k(T) Fkj+ ~ / ( T )  (21) 
k 

Taking the Fourier transform of Eq. (21) and using Eqs. (18) and (19), we 
obtain finally 

c 1 
(22) 

/(q T 1 -- cq~(T, q) 

One can give also a convenient criteria for the existence of solutions 
of Eq. (17) with Tc/> 0. First, note that the function ~b(T, q) monotonically 
increases with temperature. Taking the limit T ~  0 one can introduce the 
parameter 

~(q)= lim c~(T, q)=2-c f :  dPexp[-Fl(p)] ~ e~qr,Jsin(Jo.p) (23) 
T ~ 0  7"C p 

re 

It is apparent from Eq. (17) that the criterium of the existence of a solution 
Tc >~ 0 for a given wavevector qs is 

~(q+) >~ 1 (24) 

In order to illustrate the quality of the formalism above, we shall 
calculate the transition temperature for an Ising model with ferromagnetic 
type interactions between nearest neighbor spins. For  nearest neighbor 
interactions the equation for T c follows from Eqs. (10) and (11) with the 
form 

1 ap s i n  Jp 
s  | (c cos Jp + 1 - c) M 1 (25) 

Tc Jo sinh(zcpTc/2) 

For a 3-dimensional lattice we find from Eq. (25) that Tc(c = 1 ) ~  5J  com- 
pared with the result of a high temperature series T c ~ 4.5J. (22) The critical 
concentration ccr below which the ferromagnetic phase transition does not 
exist is Ccr ~0.29 compared with the Monte Carlo result (23) c c ~ 0 . 3 1 .  
These results show that the RLF theory is a significant improvement over 
the conventional mean field theory (that predicts T c = 6 cJ) and can be 
considered as a first step towards accounting for the effect of fluctuations. 
The accurracy of the RLF approximation is comparable to the accuracy of 
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the Bethe-Paierls pair clusters formalism. Equation (25) also reproduces 
the well known fact that there is no long-range order for one-dimensional 
systems. For one-dimensional systems one should use the value M = 2 in 
Eq. (25) for the number of nearest neighbors that results in the absence of 
positive solutions for Tc. 

III. EFFECT OF LOCAL FIELD F L U C T U A T I O N S  ON DIPOLE 
O R D E R I N G  IN A S I M P L E  CUBIC LATTICE 

In this section we will apply the formalism developed above to the 
analysis of the dipole ordering in a simple cubic lattice. For two-orientable 
dipoles the interaction Hamiltonian can be written in the form of Eq. (1) 
with 

Ji~ = J(rgi) = - ~  ( 1 - 3 cos 2 0~) (26) 
t j  

where ~t is the magnitude of the magnetic or electric dipole moment oriented 
along the z direction and 0 U is the angle between r/j and z. The variable li 
in Eq. (1) describes the two possible directions of the dipole moment. 

As well known, for dipole~lipole interaction the integral j dr J(r) 
depends on the boundary conditions. We will consider the boundary condi- 
tions corresponding to a thin slab with the axis z being parallel to the 
plane of the slab. In this case 

f dr  J(r) = ~ / t  2 (27) 

Such a geometry corresponds to the cancellation of the depolarizing field 
and to the maximum possible value of the mean-field experienced by each 
dipole from its neighbors. The effect of the boundary should be taken into 
account in the evaluation of ~(T, q) at q = 0. In order to take into account 
the effect of boundary conditions one should replace c Zr,j in Eq. (16) for 
sufficiently large r~) by n I dr, where n = N/V is the dipole number  density 
and V is the volume of the crystal. 

According to Eq.(24), in order to establish the possibility of 
ferromagnetic or antiferromagnetic ordering one needs to calculate the 
parameter ~(qx, qy, qz) for the corresponding wavevector. In Fig. 1 we pre- 
sent the values of ~(0, 0, 0) and ~(n/d, n/d, 0) as a function of concentration 
(d is the lattice constant). The calculated value of ~(0, 0, 0) is equal to 0.98 
at c = 1 meaning that ferromagnetic structure is unstable with respect to 
thermal fluctuations. The values of ~(0, 0, 0) decrease further with a decrease 
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Fig. 1. 
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Concentration dependence of the parameter ~(0, 0, 0) (1) and ~(n/d, n/d, O) (2). 

of the dipole concentration. At the same time the parameter ~(n/d, n/d, O) 
corresponding to antiferromagnetic structure is approximately equal to 1.3 
at c = 1, indicating that antiferromagmetic phase transition does exist. 

Since the value ~(0, 0, 0)=0.98 is very close to the critical value 
~(0, 0, 0) = 1, one could argue that the conclusion of the intrinsic instability 
of the ferromagnetic structure could be an artifact of the method used. We 
emphasize, however, that RLF approximation underestimates the effect of 
correlations (e.g., shown above from the comparison with the nearest 
neighbor interactions model). This implies an overestimation of Tc and ~. 

Fig. 2. 
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Fig. 3. 
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Temperature dependence of the ferromagnetic (1) and antiferromagnetic (2) suscep- 
tibility for c = 1. 

In the Appendix this conclusion is confirmed by a more exact evaluation 
of the correlation effects. 

In Fig. 1 a remarkable feature of the parameter 4(0, 0, 0) is that it 
saturates to the relatively high value 4(0, 0, 0)~0.44 as c--* 0 compared 
with the parameter ~(rc/d, re~d, 0) which rapidly decreases with concentra- 
tion. Such different behavior of 4(0, 0, 0) and ~(zc/d, re~d, 0) implies that at 
low concentrations the values of the homogeneous ferromagnetic suscep- 
tibility would be higher than those of the antiferromagnetic susceptibility. 
We illustrate this conclusion in Fig. 2, where it is shown that at c = 0.1 the 
values of the ferromagnetic susceptibility calculated from Eq. (22) exceed 
the value of the antiferromagnetic susceptibility, although the opposite 
situation takes place at c =  1 (Fig. 3) due to the existence of the anti- 
ferromagnetic phase transition at T c = 5.35J. 

The concentration dependence of the transition temperature is presented 
in Fig. 4 where also shown the mean field values of the antiferromagnetic 
and ferromagnetic transition temperatures. One can see that the effect of 
fluctuations destroys the antiferromagnetic phase transition below the 
critical concentration ccr ~ 0.56. 

We also estimated the effect of local field fluctuations in a body-centered 
cubic lattice. The positions of the atoms that correspond to a body-centered 
cubic structure can be represented by the radius-vector 

( a  a 2) r =  m+-~,n+~,k+ (28) 
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Fig. 4. Concentrat ion dependence of the phase transition temperatures for a simple cubic lat- 
tice: (1) Antif~rromagnetic transition temperature given by RLF theory. (2) Ant• 
transition temperature given by mean field theory, T C = 5.35 c. (3) Ferromagnetic transition 
temperature given by mean field theory, T,. = 4 n c / 3 .  

where m, n, k = 0, • 1, • 2 ..... a = 0, _+ 1. Note that there are two atoms per 
unit cell for a body-centered lattice, leading to twice the mean value of the 
local field, compared with that for a simple cubic lattice. At the same time 
the effect of local field fluctuations that shows up in the function F1(p) does 
not change significantly. For example, the local field second moment M 2 is 
equal to Mbc,,~ 14.9cluZ/d 3 for a body-centered cubic lattice compared with 
M~C~ 13.4ct~2/d 3 for a simple cubic lattice. This results in the suppression 
of the effect of fluctuations in a body-centered cubic lattice and in the 
possibility of ferromagnetic ordering above the critical concentration 
ccr ~ 0.3. At the same time the effect of local field fluctuations destroys 
ant• ordering for a body-center cubic lattice. The calculated 
values of ~(rc/d, re~d, 0) and ~(rc/d, re~d, re~d) do not exceed 0.5. 

IV. C O M P A R I S O N  WITH A SPATIALLY DISORDERED DIPOLE 
DISTRIBUTION 

The analysis of dipote ordering for spatially disordered dipole systems in 
terms of RLF theory has been performed recently by Zhang and Widom, (~6) 
who considered randomly distributed dipolar hard spheres and concluded 
the existence of ferromagnetic ordering. We shall calculate the parameter 
~(0, 0, 0) for randomly distributed dipolar spheres that establishes the 
possibility of ferromagnetic ordering at T=  0 and determines the critical 
volume fraction of the dipolar spheres above which such an ordering exists. 
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Using the continuous distribution of dipoles in Eq. (8) we obtain the 
parameter ~(0, 0, 0) in the form 

~(0, O, O) =-2 dp e F'(P)Eo(p) (29) 
7[ 

where 

F,(p) = n f dr( 1 - cos(J(r) p) (30) 

n 1 f dr sin(J(r) p) E~ 7 (31) 

Note that both FI(p) and Eo(p) depend on the diameter of the sphere d o that 
plays the same role as the lattice constant for point dipoles distributed 
on the lattice sites; thus do is the limiting factor for the distance separating 
neighboring dipoles. 

At very low volume fraction one can consider the limit d ~ 0 in Eq. (30) 
leading to F~ (p) ,,~ [p[. Such a limit in the analyses of dipole ordering has been 
considered in ref. 8 that corresponds to the Lorentzian shape of the local 
field distribution function. It has been shown that ferromagnetic ordering 
does not occur at low dipole concentration. On the other hand, at high 
volume fraction, the opposite limit in Eq. (30) can be considered by the 
expansion of cos(J(r) p) that corresponds to the Gaussian limit of the local 
field distribution. We obtain 

Fl(p) = �89 2, M2 = n f dr J(r) 2 (32) 

where m 2 is the second moment of the local field. 
One can show also that in the evaluation of the function Eo(p) the 

main contribution comes from long-distance dipoles for which one can 
replace sin(J(r)p) by its argument leading to Eo(p)=E0-4rm/3.  Using 
Eq. (29) we obtain finally 

~(0, O, O) = ~ n  I :  dp e M2p2/2 (33) 

The solution of the equation 

~(0, 0, 0) = 1 (34) 
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gives the critical volume fraction ~bcr ~ 0.2 (which is almost identical with 
the result obtained in ref. 16) above which ferromagnetic ordering exists at 
T=  0. The volume fraction of dipole spheres is defined by 

7~ 3 ~b =gnd0 (35) 

Note that in the case of dipoles distributed on the lattice sites Eq. (33) 
follows from Eq. (23) with the same degree of accuracy as it follows from 
Eq. (29) for a continuous dipole distribution. This means that the second 
moment M 2 is the main characteristic of the local field fluctuations if the 
dipole concentration is not very low. This fact allows one to simply analyze 
why ferromagnetic ordering is possible for a spatially disordered dipole dis- 
tribution and is not possible for a simple cubic lattice. Let us compare the 
second moment M 2 given by Eq. (32) with the local field second moment 
M~ c for the dipoles distributed on a simple cubic lattice. 

M~" = c ~' Jij ~ 13.4c r (36) 
J 

From Eq. (32) we obtain 

41rn p2 jU2 
M 2 -  3 d03 6"4~bd06 (37) 

In order to compare M 2 with M~" we account the fact that volume fraction 
for a continuous distribution of hard spheres has the same meaning as the 
atomic concentration for point particles distributed on the lattice sites, and, 
as we pointed above, the diameter of the hard spheres has the same meaning 
as the lattice constant for point dipoles. Thus we can identify c with ~b and d 
with do. One can see then that M ~  c is twice as large as M2 thereby explaining 
the different effect of fluctuations in both systems. 

It is important to emphasize also that such a large difference between 
M 2 and M~" comes mainly from the angular part of the dipole-dipole inter- 
action. If we neglect the angular part in Eq. (26) and consider J Z ( r )  ~ r-6, 
we obtain M ~ ~ ,.~ 8.5cll2/d 6, M 2 ~ 87~ktZ/d 6. 

V. CONCLUSION 

This paper presents a local field theory formulation that predicts the 
types of ordered structures in random site systems with Ising anisotropy for 
various forms of interactions between particles. It was shown that for dipoles 
distributed on a simple cubic lattice ferromagnetic structure is intrinsically 
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unstable against the fluctuations of the local fields at any dipole concentra- 
tions. Contrary to that behavior antiferroelectic type of ordering appears 
above a well defined critical concentration. It is shown also that the 
possibility of ferromagnetic dipole ordering for a spatially disordered dipole 
distribution stems from the suppressed value of second moment of the local 
field compared with that for a simple cubic lattice, where the angular part 
of dipole~lipole interaction (1 - 3 cos 2 0) leads to the relatively large value 
of the local field second moment caused by nearest neighbor dipoles. 

A P P E N D I X  

The RLF approximation neglects the effect of correlations between 
dipoles located at sites i and j. We will show below that accounting for 
correlation effects leads to an additional decrease of the parameter ~(q) 
compared with Eq. (23). 

According to the exact relation in Eq. (7), the function f~p can be 
written in the form 

1 
fip = m~ ~.V (-- i)" Y' ~ cos(JikP) I~sin(J~r (A1) 

�9 Jl "" "Jm k r Jl "" "Jm m 

From Eqs. (4) and (6) only the imaginary part of the function f~p, corre- 
sponding to odd terms over m in Eq. (A1), contributes to the values of 
((q). Consider the first order correction to the linear approximation, 
Eq. (8), 

1 
i ~  ~ ]-[ cos(Ji~p) sin(Jo, p) sin(Ju2p) sin(Jo3p)(b, b2lj~) 

JlJ2J3 k ~ J l ,  J2,J3 

We replace 

(A2) 

(b,l~lj3),~(b,)(IJj~)+(lj2)(lslb3)+(ls~)(blj2) (A3) 

In order to estimate the upper limit of the effect of correlations we can 
further replace 

Also when evaluating 

(b,/s,,) ~ 1 (A4) 

~, I~ cos(J,kp) sin(J,i2p) sin(Jo.3p) (A5) 
J2J3 k /~J2,J3 
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we consider the major contribution from long-distance dipoles that allows 
one to replace Eq. (A5) by 

E2p 2 [I cos(J~p) (A6) 
k 

where Eo=limp~oEo(p) and we have taken into account that for long- 
distant dipoles one can neglect the limitation k r J 2 ,  J3 in Eq. (A5). 

With the above approximations we obtain that function FI(p) should 
1 2 _ 2  be replaced by F l ( p ) +  iEop . Therefore, the correlation effects lead to the 

increase of the width o f f ( E )  resulting in the decrease of the parameter 
~(q). 
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